Weather Data Analysis using Python
Description
This project focuses on using Python to analyze a dummy historical weather dataset. Tasks include data cleaning and handling missing or incorrect values, generating statistical summaries, and creating visual plots to identify trends and anomalies. The final deliverable is a Jupyter or Colab notebook with clean data and visualizations that highlight key weather patterns.
The original prompt:
Weather Data Analysis Workout Description: Use Python to perform data cleaning, manipulation, and visual analysis of historical weather data to identify trends and anomalies.
Use this dummy dataset below.
Simple_Weather_Dataset.csv (50.9 KB)
Tasks: Load the historical weather dataset provided. Clean the data by handling missing values and incorrect entries. Generate summary statistics for temperature and precipitation. Create visualizations including time series plots and histograms to explore monthly trends and distributions. Expected Outcome: A Jupyter or Colab notebook with clean data and visual plots outlining key insights into weather patterns.
Introduction to Weather Data Analysis
Welcome to the first unit of our project on leveraging Python for data cleaning, manipulation, and visualization to derive meaningful insights from historical weather data. In this unit, we will set up the environment, load the weather data, and perform basic exploratory data analysis (EDA).
Setup Instructions
Prerequisites
- Python 3.x installed
- Basic understanding of Python programming
Required Libraries
Ensure you have the following Python libraries installed:
pip install pandas numpy matplotlib seaborn
Loading and Exploring Weather Data
Step 1: Import the Required Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
Step 2: Load the Weather Data
# Replace 'weather_data.csv' with the path to your dataset file
data = pd.read_csv('weather_data.csv')
Step 3: Inspect the Data
# Display the first few rows of the dataset to understand its structure
print(data.head())
# Display information about the dataset including data types and non-null counts
print(data.info())
# Summary statistics for numerical columns
print(data.describe())
Step 4: Handle Missing Values
# Check for missing values
print(data.isnull().sum())
# Handling missing values (example: filling with mean of the column)
data.fillna(data.mean(), inplace=True)
# Verify that there are no more missing values
print(data.isnull().sum())
Step 5: Exploratory Data Analysis (EDA)
1. Plotting Temperature Trends
plt.figure(figsize=(10, 5))
sns.lineplot(data=data, x='Date', y='Temperature')
plt.title('Temperature Trends Over Time')
plt.xlabel('Date')
plt.ylabel('Temperature')
plt.xticks(rotation=45)
plt.show()
2. Distribution of Temperature
plt.figure(figsize=(10, 5))
sns.histplot(data['Temperature'], bins=30, kde=True)
plt.title('Distribution of Temperature')
plt.xlabel('Temperature')
plt.ylabel('Frequency')
plt.show()
3. Correlation Heatmap
plt.figure(figsize=(10, 8))
correlation_matrix = data.corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap of Weather Variables')
plt.show()
Conclusion
In this unit, we set up the environment for our weather data analysis project in Python. We imported the necessary libraries, loaded the weather data, inspected its structure, handled missing values, and performed basic exploratory data analysis.
In the next units, we will delve deeper into advanced data cleaning, manipulation techniques, and sophisticated visualizations to extract more meaningful insights from our weather data.
Loading and Inspecting the Weather Dataset
Here, we will walk through the steps of loading and inspecting historical weather data using Python. This will help in understanding the structure and content of the dataset before we move on to data cleaning, manipulation, and visualization.
Step 1: Import Necessary Libraries
import pandas as pd
Step 2: Load the Dataset
# Replace 'weather_data.csv' with the path to your dataset file
weather_df = pd.read_csv('weather_data.csv')
Step 3: Inspect the Dataset
3.1: Display the First Few Rows
# Display the first 5 rows of the dataset
print(weather_df.head())
3.2: Display the Dataset's Information
# Display basic information about the dataset
print(weather_df.info())
3.3: Display Statistical Summary
# Display statistical summary of the dataset
print(weather_df.describe())
3.4: Check for Missing Values
# Display count of missing values per column
print(weather_df.isnull().sum())
Step 4: Analyze Column Names and Data Types
# Print column names and their data types
print(weather_df.dtypes)
Example Output after Inspection
After executing the above code snippets, you should be able to see:
- The first few rows of your dataset to get an idea of what the data looks like.
- Basic information including the number of non-null entries, data types, and memory usage.
- Summary statistics that provide insights into the distribution of numerical columns.
- Count of missing values in each column, which will be crucial for subsequent data cleaning steps.
- The list of columns with their data types, helping you understand the structure of your dataset.
This completes the implementation for loading and inspecting the weather dataset in Python. Use this initial analysis to guide your data cleaning and manipulation efforts.
Data Cleaning and Handling Missing Values
In this section, we will be focusing on cleaning and handling missing values within weather data using Python. This assumes that you already have the necessary libraries (pandas, numpy) imported and the dataset loaded and inspected.
import pandas as pd
import numpy as np
# Assuming `weather_df` is your DataFrame loaded with the weather data
# 1. Checking for missing values
missing_values = weather_df.isnull().sum()
print("Missing values in each column:\n", missing_values)
# 2. Handling Missing Values
# 2.1 Drop rows with missing values
cleaned_df = weather_df.dropna()
# 2.2 Drop columns with missing values
# cleaned_df = weather_df.dropna(axis=1)
# 2.3 Filling missing values
# Fill missing numerical values with the mean of the column
weather_df.fillna(weather_df.mean(), inplace=True)
# Fill missing categorical values with the mode (most frequent) value in the column
for column in weather_df.select_dtypes(include=['object']).columns:
weather_df[column].fillna(weather_df[column].mode()[0], inplace=True)
# 3. Verify no missing values remain
missing_values_after = weather_df.isnull().sum()
print("Missing values after cleaning in each column:\n", missing_values_after)
# Now, `weather_df` is cleaned and missing values are handled.
Explanation
Step 1: Checking for Missing Values: This involves inspecting each column to see the count of missing entries.
Step 2: Handling Missing Values:
- Dropping Rows with Missing Values: Use
dropna()
to drop any rows which contain missing values. - Dropping Columns with Missing Values: If you choose to drop columns instead of rows, use
dropna(axis=1)
. - Filling Missing Values:
- Numerical Columns: Use
fillna()
with the mean of the respective column to fill missing numerical values. - Categorical Columns: Use the mode of the column to fill missing categorical values in each column.
- Numerical Columns: Use
- Dropping Rows with Missing Values: Use
Step 3: Verification: Re-check the DataFrame to ensure no missing values remain.
This process ensures a clean dataset without any missing values, which is crucial for effective data analysis and visualization.
Generating Summary Statistics
In this section, we will generate summary statistics for the cleaned weather dataset. We assume that the dataset has been cleaned and missing values have been handled. Below is the Python implementation to derive meaningful insights through summary statistics:
import pandas as pd
# Assuming 'weather_data' is the cleaned DataFrame
# If you have not loaded and cleaned data, please refer to previous sections
# Generate summary statistics
summary_stats = weather_data.describe()
# Display summary statistics
print("Summary Statistics:")
print(summary_stats.to_string())
# Additional specific summaries for categorical columns (if they exist)
categorical_columns = weather_data.select_dtypes(include=['object']).columns
if not categorical_columns.empty:
for col in categorical_columns:
print(f"\nValue Counts for {col}:")
print(weather_data[col].value_counts())
# Generate a correlation matrix
correlation_matrix = weather_data.corr()
print("\nCorrelation Matrix:")
print(correlation_matrix.to_string())
This script achieves the following:
Summary Statistics:
- Uses the
describe()
method to generate summary statistics such as count, mean, standard deviation, min, 25th percentile, median (50th percentile), 75th percentile, and max for each numerical column in the dataset. - Prints these statistics in a readable format.
- Uses the
Value Counts for Categorical Columns (if applicable):
- Checks for columns of type 'object' which typically indicate categorical data.
- For each categorical column, it prints the frequency of each unique value.
Correlation Matrix:
- Computes the correlation matrix to understand the relationships between the numerical variables.
- Prints the correlation matrix in a readable format.
By running this code, you will obtain a comprehensive understanding of the summary statistics and relationships within your weather dataset. This facilitates deeper insights into the data, which is the goal of weather data analysis.
Time Series Analysis of Temperature Trends
In this section, we will focus on analyzing temperature trends using Python. We will perform data manipulation, visualization, and analysis to derive meaningful insights.
Import Necessary Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.tsa.seasonal import seasonal_decompose
# Optional: For interactive plots
# %matplotlib inline
Load the Weather Dataset
Assuming the dataset is already cleaned and loaded into a pandas DataFrame named weather_df
.
weather_df = pd.read_csv('path_to_cleaned_weather_data.csv', parse_dates=['Date'])
weather_df.set_index('Date', inplace=True)
Visualize Temperature Trends
Plotting the time series data to observe the temperature trend over time.
plt.figure(figsize=(14, 7))
plt.plot(weather_df['Temperature'], label='Daily Temperature')
plt.title('Temperature Trends Over Time')
plt.xlabel('Date')
plt.ylabel('Temperature (°C)')
plt.legend()
plt.show()
Decompose the Time Series
Decompose the temperature time series into trend, seasonal, and residual components.
decomposition = seasonal_decompose(weather_df['Temperature'], model='additive', period=365)
trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.residual
plt.figure(figsize=(14, 10))
plt.subplot(411)
plt.plot(weather_df['Temperature'], label='Original', color='blue')
plt.legend(loc='upper left')
plt.subplot(412)
plt.plot(trend, label='Trend', color='orange')
plt.legend(loc='upper left')
plt.subplot(413)
plt.plot(seasonal, label='Seasonality', color='green')
plt.legend(loc='upper left')
plt.subplot(414)
plt.plot(residual, label='Residuals', color='red')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
Rolling Statistics
Compute and plot rolling mean and standard deviation to understand the overall temperature trend.
rolling_mean = weather_df['Temperature'].rolling(window=12).mean()
rolling_std = weather_df['Temperature'].rolling(window=12).std()
plt.figure(figsize=(14, 7))
plt.plot(weather_df['Temperature'], color='blue', label='Original')
plt.plot(rolling_mean, color='red', label='Rolling Mean')
plt.plot(rolling_std, color='black', label='Rolling Std')
plt.title('Rolling Mean & Standard Deviation')
plt.xlabel('Date')
plt.ylabel('Temperature (°C)')
plt.legend()
plt.show()
Autocorrelation and Partial Autocorrelation
Analyzing the autocorrelation and partial autocorrelation to identify potential patterns.
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
plt.figure(figsize=(14, 7))
plot_acf(weather_df['Temperature'].dropna(), ax=plt.gca(), lags=50)
plt.title('Autocorrelation of Temperature')
plt.show()
plt.figure(figsize=(14, 7))
plot_pacf(weather_df['Temperature'].dropna(), ax=plt.gca(), lags=50)
plt.title('Partial Autocorrelation of Temperature')
plt.show()
Seasonal Trend Decomposition using LOESS (STL)
This can provide a clearer picture in some datasets.
from statsmodels.tsa.seasonal import STL
stl = STL(weather_df['Temperature'], seasonal=13)
result = stl.fit()
seasonal, trend, resid = result.seasonal, result.trend, result.resid
plt.figure(figsize=(14, 10))
plt.subplot(411)
plt.plot(weather_df['Temperature'], label='Original', color='blue')
plt.legend(loc='upper left')
plt.subplot(412)
plt.plot(trend, label='Trend', color='orange')
plt.legend(loc='upper left')
plt.subplot(413)
plt.plot(seasonal, label='Seasonality', color='green')
plt.legend(loc='upper left')
plt.subplot(414)
plt.plot(resid, label='Residuals', color='red')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
With these analyses, you'll be able to derive meaningful insights from the temperature trends in your historical weather data. Make sure to tailor the window size and decomposition parameters to your specific dataset characteristics.
Exploring Precipitation Patterns
In this unit, we will leverage Python to explore precipitation patterns using historical weather data. This involves visualizing the data and identifying trends or anomalies over time. Let's proceed with the implementation without repeating previously covered steps.
Step 1: Import the Necessary Libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
Step 2: Load and Inspect the Dataset
Assuming the dataset is already loaded into a DataFrame named df
.
# Sample structure check
print(df.head())
Step 3: Data Preparation
Ensure the 'Date' column is of datetime type and set it as an index for better time series analysis.
df['Date'] = pd.to_datetime(df['Date'])
df.set_index('Date', inplace=True)
Step 4: Extract Precipitation Data
Assuming the precipitation column is named 'Precipitation'.
precipitation_data = df['Precipitation']
Step 5: Monthly and Yearly Averages
Calculate monthly and yearly aggregated data to observe larger trends.
monthly_precipitation = precipitation_data.resample('M').sum()
yearly_precipitation = precipitation_data.resample('Y').sum()
Step 6: Visualization
Monthly Precipitation Pattern
plt.figure(figsize=(12, 6))
plt.plot(monthly_precipitation, label='Monthly Precipitation')
plt.title('Monthly Precipitation Over Time')
plt.xlabel('Date')
plt.ylabel('Precipitation (mm)')
plt.legend()
plt.show()
Yearly Precipitation Pattern
plt.figure(figsize=(12, 6))
plt.bar(yearly_precipitation.index.year, yearly_precipitation, color='blue', width=0.6)
plt.title('Yearly Precipitation Over Time')
plt.xlabel('Year')
plt.ylabel('Total Precipitation (mm)')
plt.show()
Seasonal Analysis
Create a box plot to analyze precipitation patterns by season.
df['Month'] = df.index.month
seasons = {12: 'Winter', 1: 'Winter', 2: 'Winter',
3: 'Spring', 4: 'Spring', 5: 'Spring',
6: 'Summer', 7: 'Summer', 8: 'Summer',
9: 'Fall', 10: 'Fall', 11: 'Fall'}
df['Season'] = df['Month'].map(seasons)
plt.figure(figsize=(12, 6))
sns.boxplot(x='Season', y='Precipitation', data=df, order=['Winter', 'Spring', 'Summer', 'Fall'])
plt.title('Precipitation Patterns by Season')
plt.xlabel('Season')
plt.ylabel('Precipitation (mm)')
plt.show()
Step 7: Scatter Plot of Precipitation vs Time
Generate a scatter plot to observe daily precipitation.
plt.figure(figsize=(12, 6))
plt.scatter(df.index, df['Precipitation'], c='blue', alpha=0.6)
plt.title('Daily Precipitation Scatter Plot')
plt.xlabel('Date')
plt.ylabel('Precipitation (mm)')
plt.show()
Step 8: Trend Analysis Using Rolling Mean
Use rolling mean to smooth the time series and highlight trends.
rolling_mean = precipitation_data.rolling(window=30).mean()
plt.figure(figsize=(12, 6))
plt.plot(precipitation_data, label='Daily Precipitation', alpha=0.5)
plt.plot(rolling_mean, color='red', label='30-Day Rolling Mean')
plt.title('Precipitation Trend Analysis with Rolling Mean')
plt.xlabel('Date')
plt.ylabel('Precipitation (mm)')
plt.legend()
plt.show()
This concludes our exploration of precipitation patterns using Python. The steps above should be practically viable and straightforward to apply to historical weather data.
Creating Visualizations: Histograms and Plots
In this section, we will generate histograms to visualize the distribution of temperature and precipitation, and plots to visualize trends and correlations within the weather data. We will use Python's matplotlib
and seaborn
for creating these visualizations.
Import Necessary Libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Assume `weather_data.csv` is already cleaned and preprocessed
df = pd.read_csv('weather_data.csv', parse_dates=['date'])
Histogram of Temperature
plt.figure(figsize=(10, 6))
sns.histplot(df['temperature'], bins=30, kde=True)
plt.title('Distribution of Temperature')
plt.xlabel('Temperature (°C)')
plt.ylabel('Frequency')
plt.show()
Histogram of Precipitation
plt.figure(figsize=(10, 6))
sns.histplot(df['precipitation'], bins=30, kde=True)
plt.title('Distribution of Precipitation')
plt.xlabel('Precipitation (mm)')
plt.ylabel('Frequency')
plt.show()
Line Plot of Temperature Over Time
plt.figure(figsize=(14, 7))
plt.plot(df['date'], df['temperature'], label='Temperature')
plt.title('Temperature Over Time')
plt.xlabel('Date')
plt.ylabel('Temperature (°C)')
plt.legend()
plt.show()
Line Plot of Precipitation Over Time
plt.figure(figsize=(14, 7))
plt.plot(df['date'], df['precipitation'], label='Precipitation', color='orange')
plt.title('Precipitation Over Time')
plt.xlabel('Date')
plt.ylabel('Precipitation (mm)')
plt.legend()
plt.show()
Scatter Plot of Temperature vs. Precipitation
plt.figure(figsize=(10, 6))
sns.scatterplot(x='temperature', y='precipitation', data=df)
plt.title('Temperature vs Precipitation')
plt.xlabel('Temperature (°C)')
plt.ylabel('Precipitation (mm)')
plt.show()
Pair Plot for Temperature, Precipitation, and Wind Speed (if available)
sns.pairplot(df[['temperature', 'precipitation', 'wind_speed']])
plt.show()
Heatmap of Correlation Matrix
plt.figure(figsize=(8, 6))
correlation_matrix = df[['temperature', 'precipitation', 'wind_speed']].corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1)
plt.title('Correlation Matrix')
plt.show()
These plots should give you a comprehensive visualization of the patterns and relationships in your weather dataset. Use them to derive meaningful insights and report key findings in your analysis.
Deriving Insights and Making Conclusions
This section focuses on leveraging the clean and well-processed weather data to derive meaningful insights and make conclusions. We will use Python libraries such as pandas
, matplotlib
, and seaborn
to analyze patterns, correlations, and trends.
Implementation
Import Necessary Libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
Load Cleaned Weather Data
# Assuming the cleaned data is stored in a CSV file
data = pd.read_csv('cleaned_weather_data.csv')
Calculate Correlations
# Calculate correlation matrix
correlation_matrix = data.corr()
print(correlation_matrix)
# Visualize the correlation matrix
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix of Weather Variables')
plt.show()
Insight: High correlation between temperature and humidity might suggest a relationship that can be further investigated.
Analyze Seasonal Trends
# Adding month column for seasonal analysis
data['date'] = pd.to_datetime(data['date'])
data['month'] = data['date'].dt.month
# Group by month and calculate average temperature and precipitation
monthly_trends = data.groupby('month').agg({
'temperature': 'mean',
'precipitation': 'mean'
}).reset_index()
# Visualize seasonal trends
plt.figure(figsize=(14, 6))
sns.lineplot(x='month', y='temperature', data=monthly_trends, marker='o', label='Temperature')
sns.lineplot(x='month', y='precipitation', data=monthly_trends, marker='o', label='Precipitation')
plt.title('Average Monthly Temperature and Precipitation')
plt.xlabel('Month')
plt.ylabel('Average Value')
plt.legend()
plt.show()
Insight: Identify peak temperature months and their impact on precipitation levels.
Identify Temperature Anomalies
# Detecting anomalies using Z-score method
data['z_score_temp'] = (data['temperature'] - data['temperature'].mean()) / data['temperature'].std()
anomalies = data[data['z_score_temp'].abs() > 3]
# Visualize anomalies
plt.figure(figsize=(14, 6))
sns.lineplot(x='date', y='temperature', data=data, label='Temperature', color='blue')
plt.scatter(anomalies['date'], anomalies['temperature'], color='red', label='Anomalies')
plt.title('Temperature Trends with Anomalies Highlighted')
plt.xlabel('Date')
plt.ylabel('Temperature')
plt.legend()
plt.show()
print("Anomalous Temperature Records:")
print(anomalies[['date', 'temperature']])
Insight: Identifying temperature anomalies can help in understanding unusual weather patterns.
Conclusion
Summarize the key findings from the analysis:
- Correlation Insights: Explain the correlation between different weather variables, e.g., temperature and humidity.
- Seasonal Trends: Discuss the trends based on monthly average temperature and precipitation.
- Anomalies Detection: Highlight how the temperature anomalies were identified and their potential significance.
This concludes the derived insights and makes comprehensive conclusions based on thorough data analysis. The steps provided can directly be implemented on historical weather data using Python to obtain real-life actionable insights.