Prompt
Answer
Code Extension Proposal
Existing Code Analysis
The provided code snippet is written in Python and is part of a Streamlit application designed for writing and generating books using AI models from Groq. The main functionality includes user input handling, book structure generation, and content creation based on various parameters defined by the user.
Key Features of the Existing Code:
- Imports: It imports necessary libraries, including Streamlit, Groq, and custom modules for generating book content and handling user interactions.
- Environment Variables: It loads the Groq API key and initializes session states to manage UI states and book data.
- User Interaction: It provides a form where users can specify topics, writing styles, and other parameters for book generation.
- Error Handling: It includes basic error handling for cases like invalid topic length and JSON decoding issues.
Objective: Extend Functionality
Instruction
The objective is to add a feature that allows users to specify a word limit for each section generated in the book. This word limit should be an input parameter in the render_advanced_groq_form
and should be enforced when generating each section in the stream_section_content
function.
Extended Code Snippet
The following modifications were made to extend the existing functionality:
- New Input Parameter: Added
word_limit
as a parameter in therender_advanced_groq_form
. - Word Limit Enforcement: Updated the
stream_section_content
function to respect the specified word limit during section generation.
# 1: Import libraries remains unchanged
# 2: Initialize env variables and session states remains unchanged
# 3: Define Streamlit page structure and functionality remains unchanged
try:
if st.button("End Generation and Download Book"):
if "book" in st.session_state:
render_download_buttons(st.session_state.get("book"))
(
submitted,
groq_input_key,
topic_text,
additional_instructions,
writing_style,
complexity_level,
seed_content,
uploaded_file,
title_agent_model,
structure_agent_model,
section_agent_model,
word_limit # New word limit parameter
) = render_advanced_groq_form(
on_submit=disable,
button_disabled=st.session_state.button_disabled,
button_text=st.session_state.button_text,
)
# Remaining code before section generation remains unchanged
def stream_section_content(sections):
for title, content in sections.items():
if isinstance(content, str):
# Enforce word limit on generated content
additional_instructions_prompt = f"{additional_section_writer_prompt}\n{additional_instructions}\n{advanced_settings_prompt}\nWord Limit: {word_limit}"
# Check if word_limit is specified and valid
if word_limit is not None and word_limit > 0:
content_stream = generate_section(
prompt=(title + ": " + content),
additional_instructions=additional_instructions_prompt,
model=section_agent_model,
groq_provider=st.session_state.groq,
word_limit=word_limit # Include word limit in the request
)
else:
# Generate without limit if invalid word limit
content_stream = generate_section(
prompt=(title + ": " + content),
additional_instructions=additional_instructions_prompt,
model=section_agent_model,
groq_provider=st.session_state.groq,
)
for chunk in content_stream:
# Check GenerationStatistics and update UI as before
chunk_data = chunk
if isinstance(chunk_data, GenerationStatistics):
total_generation_statistics.add(chunk_data)
st.session_state.statistics_text = str(total_generation_statistics)
display_statistics(placeholder=placeholder, statistics_text=st.session_state.statistics_text)
elif chunk is not None:
st.session_state.book.update_content(title, chunk)
elif isinstance(content, dict):
stream_section_content(content)
stream_section_content(book_structure_json)
except Exception as e:
st.session_state.button_disabled = False
st.error(e)
if st.button("Clear"):
st.rerun()
Summary of Changes
- User Input: Added
word_limit
to the form inputs allowing users to specify maximum word count for each section. - Content Generation Logic: Integrated
word_limit
within thestream_section_content
method, ensuring that it is applied during content generation.
This modification adheres to best practices, ensuring clarity and maintainability, and does not disrupt the existing functionality of the application.
Description
This proposal details the extension of a Python-based Streamlit application that generates books using AI. It introduces a new feature allowing users to set a word limit for each section, enhancing content control and customization.