Prompt
Answer
Implementing a Neural Network from Scratch in Python
This guide outlines a step-by-step approach to implementing a basic neural network from scratch in Python. The neural network will include a single hidden layer and will be trained using backpropagation.
Table of Contents
- Prerequisites
- Importing Necessary Libraries
- Defining Neural Network Architecture
- Creating Functions
- Activation Function
- Forward Propagation
- Backward Propagation
- Training the Model
- Code Usage Example
- Conclusion
1. Prerequisites
Before diving into the code, ensure you have the following libraries installed:
- NumPy: For numerical calculations
- Matplotlib: For plotting (optional, for visualization)
pip install numpy matplotlib
2. Importing Necessary Libraries
import numpy as np
import matplotlib.pyplot as plt # Optional for visualization
3. Defining Neural Network Architecture
We'll create a class for our neural network that will handle the operations for a simple architecture.
class NeuralNetwork:
def __init__(self, input_size, hidden_size, output_size):
"""
Initializes the neural network with weights.
Parameters:
input_size (int): Number of input features
hidden_size (int): Number of neurons in hidden layer
output_size (int): Number of output neurons
"""
# Weights initialization with small random values
self.W1 = np.random.randn(input_size, hidden_size) * 0.01
self.W2 = np.random.randn(hidden_size, output_size) * 0.01
self.b1 = np.zeros((1, hidden_size))
self.b2 = np.zeros((1, output_size))
## 4. Creating Functions
### Activation Function
Define the sigmoid activation function and its derivative.
```python
def sigmoid(self, z):
"""Applies the sigmoid function."""
return 1 / (1 + np.exp(-z))
def sigmoid_derivative(self, z):
"""Returns the derivative of the sigmoid function."""
return z * (1 - z)
Forward Propagation
Implement the forward pass through the network.
def forward(self, X):
"""
Performs forward propagation.
Parameters:
X (np.ndarray): Input data
Returns:
np.ndarray: Output of the neural network after forward pass
"""
self.z1 = np.dot(X, self.W1) + self.b1
self.a1 = self.sigmoid(self.z
Description
This guide provides a comprehensive step-by-step tutorial on implementing a basic neural network with a single hidden layer in Python, featuring critical components like forward propagation, backpropagation, and model training.
More Code Generators
Apache Flink Code Generator Apache Pig Code Generator Azure Data Factory Code Generator C/C++ Code Generator CouchDB Code Generator DAX Code Generator Excel Code Generator Firebase Code Generator Google BigQuery Code Generator Google Sheets Code Generator GraphQL Code Generator Hive Code Generator Java Code Generator JavaScript Code Generator Julia Code Generator Lua Code Generator M (Power Query) Code Generator MATLAB Code Generator MongoDB Code Generator Oracle Code Generator PostgreSQL Code Generator Power BI Code Generator Python Code Generator R Code Generator Redis Code Generator Regex Code Generator Ruby Code Generator SAS Code Generator Scala Code Generator Shell Code Generator SPSS Code Generator SQL Code Generator SQLite Code Generator Stata Code Generator Tableau Code Generator VBA Code Generator