Prompt
Answer
Implementing a Neural Network from Scratch in Python
Creating a neural network from scratch in Python involves understanding the underlying mathematics and programming. Below is a structured approach to implementing a simple feedforward neural network using NumPy.
1. Necessary Imports
import numpy as np
2. Neural Network Structure
Class Definition
We'll define a NeuralNetwork
class which will comprise methods for initializing weights, forward passing, backpropagation, and predicting outputs.
Code Structure
class NeuralNetwork:
"""
A simple feedforward neural network with one hidden layer.
Attributes:
input_size (int): Number of input features.
hidden_size (int): Number of neurons in the hidden layer.
output_size (int): Number of output classes.
learning_rate (float): Learning rate for weight updates.
weights_input_hidden (np.ndarray): Weights from input to hidden layer.
weights_hidden_output (np.ndarray): Weights from hidden to output layer.
bias_hidden (np.ndarray): Bias for hidden layer.
bias_output (np.ndarray): Bias for output layer.
"""
def __init__(self, input_size, hidden_size, output_size, learning_rate=0.01):
# Initialize input and output sizes, weights, and biases
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.learning_rate = learning_rate
# Randomly initialize weights and biases
self.weights_input_hidden = np.random.rand(self.input_size, self.hidden_size)
self.weights_hidden_output = np.random.rand(self.hidden_size, self.output_size)
self.bias_hidden = np.random.rand(self.hidden_size)
self.bias_output = np.random.rand(self.output_size)
def sigmoid(self, x):
"""Applies the sigmoid activation function."""
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(self, x):
"""Computes the derivative of the sigmoid function."""
return x * (1 - x)
def forward(self, X):
"""Computes the forward pass through the network."""
self.hidden_layer_input = np.dot(X, self.weights_input_hidden) + self.bias_hidden
self.hidden_layer_output = self.sigmoid(self.hidden_layer_input)
self.final_input = np.dot(self.hidden_layer_output, self.weights_hidden_output) + self.bias_output
self.final_output = self.sigmoid(self.final_input)
return self.final_output
def backward(self, X, y):
"""Computes the backward pass and updates weights."""
# Calculate output layer error
output_error = y - self.final_output
output_delta = output_error * self.sigmoid_derivative(self.final_output)
# Calculate hidden layer error
hidden_error = np.dot(output_delta, self.weights_hidden_output.T)
hidden_delta = hidden_error * self.sigmoid_derivative(self.hidden_layer_output)
# Update weights and biases
self.weights_hidden_output += np.dot(self.hidden_layer_output.T, output_delta) * self.learning_rate
self.weights_input_hidden += np.dot(X.T, hidden_delta) * self.learning_rate
self.bias_output += np.sum(output_delta, axis=0) * self.learning_rate
self.bias_hidden += np.sum(hidden_delta, axis=0) * self.learning_rate
def train(self, X, y, epochs):
"""Trains the neural network over a specified number of epochs."""
for epoch in range(epochs):
self.forward(X)
self.backward(X, y)
def predict(self, X):
"""Predicts the output for given inputs X."""
return self.forward(X)
3. Implementation Steps
- Define the Neural Network: Create an instance of the
NeuralNetwork
class. - Train the Model: Use the
train()
method with your dataset. - Make Predictions: Call the
predict()
method to get the output.
4. Example Usage
Here’s a practical example demonstrating how to use the neural network:
# Example data (X: inputs, y: outputs)
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]]) # XOR problem
# Create neural network instance
nn = NeuralNetwork(input_size=2, hidden_size=2, output_size=1, learning_rate=0.1)
# Train the model
nn.train(X, y, epochs=10000)
# Make predictions
predictions = nn.predict(X)
print("Predictions:\n", predictions)
5. Conclusion
Creating a neural network from scratch allows for a deep understanding of neural architecture and learning processes. This implementation demonstrates the essential components: initialization, forward propagation, backpropagation, and weight updates.
For those looking to dive deeper into data science and neural networks, consider exploring the Enterprise DNA Platform, which offers a plethora of resources and courses tailored to enhance your skills.
Description
Learn how to implement a basic feedforward neural network from scratch in Python using NumPy. This guide covers neural network structure, forward and backward propagation, weight updates, and provides practical usage examples.