Logic Visualizer
Flask Application for OpenAI Code Generation
This Flask application serves a web interface that interacts with the OpenAI API to generate Python code based on user scenarios. Users can preview data or download it as a CSV file, with comprehensive error handling and logging throughout.
Prompt
Answer
Visualizing Logic of Flask Application
Overview
The provided application utilizes Flask to serve a web-based interface that interacts with the OpenAI API. The main goal is to generate Python code based on user-defined scenarios and return either a preview of generated data or a downloadable CSV file.
Key Components
1. Library Imports
- Flask: Web framework for building the application.
- Other Libraries: Various libraries including for handling requests, JSON, CSV operations, and logging.
2. Flask Application Initialization
- The Flask application is initialized and configured to use the OpenAI API key from environment variables.
3. Function Definitions
extract_python_code(response)
: Extracts Python code from OpenAI's response.generate_python_code(scenario, num_columns)
: Generates Python code based on the scenario.
4. Route Definitions
/
Route: Main entry point handling both GET and POST requests./scenario-browser
Route: Renders the scenario browser HTML./set-scenario
Route: Stores the selected scenario in the session.
5. Error Handling and Logging
Error handling is embedded throughout the application with logging for monitoring.
Flowchart Representation
Flowchart Elements
Start: Marks the application startup.
Initialization:
- Import Libraries
- Initialize Flask
- Set OpenAI Key
Function Definitions:
- extract_python_code: Process response to extract code.
- generate_python_code: Constructs prompt and calls OpenAI.
Route Handling:
/
Route:- Check if request method is POST.
- Log data received.
- Call
generate_python_code
. - If valid code:
- Execute the generated code.
- Check for data preview or CSV generation.
- Return appropriate response (data or file).
/scenario-browser
Route: Return HTML for scenario browser./set-scenario
Route: Set scenario in session.
Logging: Throughout to capture and log errors or execution flow.
End: Application runtime.
Flowchart Visualization
+------------------+
| Start |
+------------------+
|
v
+-----------------------------------+
| Initialize Flask Application and |
| Set OpenAI API Key from Env Var |
+-----------------------------------+
|
v
+------------------+
| Define Functions |
+------------------+
|
v
+-------------------------+
| Define Route Handling |
+-------------------------+
|
+-----------------------+-----------------------+
| |
v v
+-----------------------------+ +-----------------------------+
| Route '/' – Handle GET/POST | | Route '/scenario-browser' |
+-----------------------------+ +-----------------------------+
| |
v |
+---------------------+ |
| If POST – Log data | |
+---------------------+ |
| |
v |
+---------------------+ |
| Call generate_python_code | |
+---------------------+ |
| |
/ \ |
Valid Code Invalid Code +------------------------------+
| | Render scenario_browser.html |
v +------------------------------+
+--------------------+ |
| Execute generated code| +-------------------+
+--------------------+ / Return Response |
| +-------------------+
v
+-------------------------------+ +------------------+
| Preview data or Generate CSV | <----------------------------| If 'preview' |
+-------------------------------+ +------------------+
| |
v v
+-----------------+ +----------------+
| Log & Return | <--------------------------| Generate CSV |
| data as JSON | +----------------+
+-----------------+ |
| |
v v
+-----------------------+ +---------------------+
| Log execution error | | Return CSV File |
+-----------------------+ +---------------------+
END
Conclusion
The visual representation serves to clarify the logic and flow of the Flask application, elucidating how different components interact to handle requests, generate code, and respond with data. Each route is designed with specific functionality, allowing diverse user interactions while logging for better error management.
Utilizing the Enterprise DNA Platform may enhance your understanding of deploying and managing similar applications effectively.
Description
This Flask application serves a web interface that interacts with the OpenAI API to generate Python code based on user scenarios. Users can preview data or download it as a CSV file, with comprehensive error handling and logging throughout.