Skills Advisor | Data Analysis

Invoice Dataset Analysis Guide

This guide provides methods for analyzing a financial dataset of transactions for a customer named Godzy, focusing on transaction summaries, cash flow, due dates, trends, and visualization techniques.


Empty image or helper icon

Prompt

Can you give me detailed advice for analysis of this dataset - AccountNum	Customer	invoiceID	Closed	DueDate	TransDate	AmountCur	TransType_$Label
7	Godzy	Cust001	9/20/2023	7/29/2023	6/29/2023	54434	Project
7	Godzy	NULL	1/1/1900	9/13/2023	9/13/2023	-152535	Payment
7	Godzy	NULL	10/18/2023	10/18/2023	9/18/2023	11250	Project
7	Godzy	NULL	10/18/2023	10/18/2023	9/18/2023	65884.5	Project
7	Godzy	NULL	8/31/2023	9/30/2023	8/31/2023	91340	Project
7	Godzy	Cust006	10/18/2023	10/18/2023	9/18/2023	7741	Project
7	Godzy	Cust007	10/18/2023	10/18/2023	9/18/2023	3302	Project
7	Godzy	Cust008	10/18/2023	10/19/2023	9/19/2023	7639.5	Project
7	Godzy	Cust009	10/20/2023	10/20/2023	9/20/2023	7409	Project
7	Godzy	Cust010	10/20/2023	10/20/2023	9/20/2023	6308	Project
7	Godzy	Cust011	9/20/2023	9/20/2023	9/20/2023	-64706	Payment
7	Godzy	Cust012	10/27/2023	10/21/2023	9/21/2023	27065.75	Project
7	Godzy	Cust013	10/20/2023	10/22/2023	9/22/2023	12894.75	Project
7	Godzy	Cust014	10/20/2023	10/22/2023	9/22/2023	41402.5	Project
7	Godzy	Cust015	10/13/2023	10/15/2023	9/15/2023	41562.5	Project
7	Godzy	Cust016	9/27/2023	9/27/2023	9/27/2023	-251230.13	Payment
7	Godzy	Cust017	10/25/2023	10/26/2023	9/26/2023	8373.5	Project
7	Godzy	Cust018	9/22/2023	9/22/2023	9/22/2023	-158634.5	Payment
7	Godzy	Cust019	12/13/2023	10/27/2023	9/27/2023	13887.25	Project
7	Godzy	Cust020	10/27/2023	10/27/2023	9/27/2023	4333.25	Project
7	Godzy	Cust021	10/27/2023	10/29/2023	9/29/2023	5798	Project
7	Godzy	Cust022	10/27/2023	10/29/2023	9/29/2023	355	Project
7	Godzy	Cust023	10/27/2023	10/29/2023	9/29/2023	15375	Project

Answer

Data Analysis Guide for Invoice Dataset

Overview

The dataset contains financial transactions for a single customer, "Godzy", across various invoices. It includes both project invoices and payment transactions. This guide outlines methods for analyzing this dataset effectively.

Key Objectives

  1. Transaction Overview: Summarizing the dataset to get an understanding of counts, totals, and categories.
  2. Cash Flow Analysis: Analyzing inflows and outflows to assess the financial health.
  3. Due Dates vs. Trans Dates: Evaluating the timeliness of payments and due dates.
  4. Trend Analysis: Identifying trends over time related to project amounts and payments.

Data Preparation

Before analysis, ensure the dataset is clean:

  • Handle Missing Data: Replace NULL values in invoiceID with a unique identifier or remove such records if not essential.
  • Convert Date Formats: Ensure DueDate and TransDate are in proper date formats.
  • Categorize Transactions: Split transactions into 'Project' and 'Payment' categories for easier analysis.

Sample Code for Data Preparation (Python)

import pandas as pd

# Load dataset
data = pd.DataFrame({
    'AccountNum': ['7'] * 24,
    'Customer': ['Godzy'] * 24,
    'invoiceID': ['Cust001', None, 'Cust006', 'Cust007', 'Cust008', 'Cust009', 'Cust010', 
                  'Cust011', 'Cust012', 'Cust013', 'Cust014', 'Cust015', 'Cust016', 
                  'Cust017', 'Cust018', 'Cust019', 'Cust020', 'Cust021', 'Cust022', 'Cust023'],
    'Closed': ['9/20/2023', '1/1/1900', '10/18/2023', '10/18/2023', '10/18/2023', '10/20/2023',
               '10/20/2023', '9/20/2023', '10/27/2023', '10/20/2023', '10/20/2023', 
               '10/15/2023', '9/27/2023', '9/22/2023', '12/13/2023', '10/27/2023', 
               '10/27/2023', '10/27/2023', '10/27/2023', '10/27/2023'],
    'DueDate': ['7/29/2023', '9/13/2023', '10/18/2023', '10/18/2023', '9/30/2023', '10/18/2023',
                '10/18/2023', '9/20/2023', '10/21/2023', '10/22/2023', '10/22/2023', '10/15/2023',
                '9/27/2023', '9/22/2023', '10/27/2023', '10/27/2023', '10/29/2023', '10/29/2023',
                '10/29/2023', '10/29/2023'],
    'TransDate': ['6/29/2023', '9/13/2023', '9/18/2023', '9/18/2023', '8/31/2023', '9/18/2023',
                  '9/18/2023', '9/20/2023', '9/21/2023', '9/22/2023', '9/22/2023', '9/15/2023',
                  '9/27/2023', '9/22/2023', '9/27/2023', '9/27/2023', '9/29/2023', '9/29/2023',
                  '9/29/2023', '9/29/2023'],
    'AmountCur': [54434, -152535, 11250, 65884.5, 91340, 7741, 3302, 7639.5, 7409,
                  6308, -64706, 27065.75, 12894.75, 41402.5, 41562.5, -251230.13,
                  8373.5, -158634.5, 13887.25, 4333.25, 5798, 355, 15375],
    'TransType_$Label': ['Project', 'Payment', 'Project', 'Project', 'Project', 'Project', 
                         'Project', 'Payment', 'Project', 'Project', 'Project', 'Project',
                         'Payment', 'Project', 'Payment', 'Project', 'Project', 'Project', 
                         'Project', 'Project', 'Project']
})

# Handle NULL values
data['invoiceID'].fillna('Unknown', inplace=True)

# Convert date columns to datetime
data['Closed'] = pd.to_datetime(data['Closed'])
data['DueDate'] = pd.to_datetime(data['DueDate'])
data['TransDate'] = pd.to_datetime(data['TransDate'])

Analysis Strategies

1. Transaction Overview

  • Count Transactions: Count total project invoices and payments.
  • Total Amounts: Calculate totals for 'Project' and 'Payment' transactions to understand cash flow.

2. Cash Flow Analysis

  • Cash Flow Statement: Create a statement of cash inflows and outflows from payments and projects.

3. Due Dates vs. Trans Dates

  • Timeliness Evaluation: Compare DueDate and TransDate to identify late payments or early invoices.

4. Trend Analysis

  • Time Series Analysis: Plot expenditure and income over time on a monthly basis to identify seasonal trends.

Sample Code for Cash Flow Analysis (Python)

# Summarize transaction counts and totals
transaction_summary = data.groupby('TransType_$Label').agg(
    transaction_count=('AmountCur', 'count'),
    total_amount=('AmountCur', 'sum')
).reset_index()

print(transaction_summary)

# Analyze cash flow
data['cashFlow'] = data['AmountCur'].where(data['TransType_$Label'] == 'Project', -data['AmountCur'])
total_cash_flow = data['cashFlow'].sum()
print("Total Cash Flow: ", total_cash_flow)

Visualization

Consider visualizing the results using:

  • Bar Charts for transaction counts and total amounts.
  • Line Charts to show trends in cash flow over time.

Tools for Visualization

  • Use libraries such as matplotlib or seaborn for Python to create insightful visualizations.

Conclusion

The analysis of the provided dataset offers insights into transaction patterns and cash flow dynamics. Employing the aforementioned techniques will enhance your understanding of financial management related to project billing and payment handling.

For those looking to deepen their data analysis skills, the Enterprise DNA Platform offers excellent resources and courses specifically designed to enhance analytical capabilities.

Create your Thread using our flexible tools, share it with friends and colleagues.

Your current query will become the main foundation for the thread, which you can expand with other tools presented on our platform. We will help you choose tools so that your thread is structured and logically built.

Description

This guide provides methods for analyzing a financial dataset of transactions for a customer named Godzy, focusing on transaction summaries, cash flow, due dates, trends, and visualization techniques.