Prompt
Answer
Extracting Sample Values from PDF and Saving to SQL Database
This document outlines a Python function to extract sample values from a PDF file and save the extracted data into a SQL database. The solution includes necessary imports, a comprehensive function definition, input validation, and a practical usage example.
Necessary Imports
To accomplish this task, we will utilize the following libraries:
PyPDF2
for PDF file handlingsqlite3
for SQL database operationsre
for regular expressions (if needed for parsing extracted data)
Install necessary packages if not already installed:
pip install PyPDF2
Code Implementation
Let's implement the function step by step.
import re
import sqlite3
from PyPDF2 import PdfReader
def extract_pdf_sample_to_sql(pdf_path, db_path):
"""
Extracts sample values from a PDF file and saves them to a SQL database.
Parameters:
pdf_path (str): The file path to the PDF document.
db_path (str): The file path to the SQL database.
Returns:
int: The number of records inserted into the database.
Raises:
FileNotFoundError: If the PDF file does not exist.
sqlite3.Error: If there's an error connecting to the database or executing queries.
"""
# Validate PDF file path
if not isinstance(pdf_path, str) or not pdf_path.endswith('.pdf'):
raise ValueError("Invalid PDF file path provided.")
# Validate database path
if not isinstance(db_path, str) or not db_path.endswith('.db'):
raise ValueError("Invalid database path provided.")
try:
# Read PDF file
reader = PdfReader(pdf_path)
sample_values = []
# Extract text from each page of the PDF
for page in reader.pages:
text = page.extract_text()
if text:
# Use regex to find sample values (modify based on specific needs)
found_values = re.findall(r'Sample Value:\s*(\w+)', text)
sample_values.extend(found_values)
# Connect to SQLite database
conn = sqlite3.connect(db_path)
cursor = conn.cursor()
# Create a table if it doesn't exist
cursor.execute('''CREATE TABLE IF NOT EXISTS samples (
id INTEGER PRIMARY KEY,
value TEXT NOT NULL)''')
# Insert extracted values into the database
cursor.executemany('INSERT INTO samples (value) VALUES (?)', [(value,) for value in sample_values])
# Commit changes and close the connection
conn.commit()
return len(sample_values) # Return the number of records inserted
except FileNotFoundError:
raise FileNotFoundError("PDF file not found.")
except sqlite3.Error as e:
raise sqlite3.Error(f"Database error: {e}")
finally:
if 'conn' in locals():
conn.close()
Code Explanation
Imports:
PyPDF2
to handle PDF reading.sqlite3
to interact with the SQL database.re
for pattern matching that extracts specific values.
Function Design:
- The function accepts two parameters:
pdf_path
anddb_path
. - Validates that inputs are correct.
- Reads the PDF and extracts sample values using regex.
- Connects to the SQL database and creates a table if it doesn't exist.
- Inserts extracted sample values into the table.
- Returns the number of records inserted.
- The function accepts two parameters:
Error Handling:
- The function incorporates exception handling for file and database errors.
Usage Example
Here’s how you can use the function in a real-world scenario.
# Define the paths for the PDF document and the SQLite database
pdf_file_path = 'sample_data.pdf'
database_file_path = 'sample_data.db'
# Call the function to extract values and save them to the database
try:
records_inserted = extract_pdf_sample_to_sql(pdf_file_path, database_file_path)
print(f"Inserted {records_inserted} records into the database.")
except Exception as e:
print(f"An error occurred: {e}")
Summary
This guide provides a structured approach to extract sample values from a PDF file and save them into a SQLite database using Python. The provided code is efficient, follows best practices, and includes comprehensive documentation and error handling. For further learning on data science and associated practices, consider exploring the Enterprise DNA Platform.
Description
This guide provides a Python solution for extracting sample values from a PDF file and saving them in a SQL database, using libraries like PyPDF2 and sqlite3, along with robust error handling and practical examples.