Bug Detector | Python

Bug Analysis and Fixes for Python Anomaly Detection Code

This document details the bugs identified in a Python code snippet for anomaly detection, providing specific fixes for issues like incorrect escape characters, format string usage, import statement typos, and method definitions.


Empty image or helper icon

Prompt

import json
import numpy as np
import pandas as pd
from sklearn.neighbors import LocalOutlierFactor
from sklearn.feature_extraction.text import TfidfVectorizer
import matplotlib.pyplot as plt
import seaborn as sns
import lime.lime_tabular
import shap
from shap import KernelExplainer
from logai.algorithms.algo_interfaces import AnomalyDetectionAlgo
from logai.config_interfaces import Config
from logai.algorithms.factory import factory
from idia_logai.LOFParams import LOFParams 

@factory.register("detection", "lof", LOFParams)
class LOFDetector(AnomalyDetectionAlgo):
    def __init__(self, params: LOFParams):
        self.model = LocalOutlierFactor(
            n_neighbors=params.n_neighbors,
            algorithm=params.algorithm,
            leaf_size=params.leaf_size,
            metric=params.metric,
            p=params.p,
            metric_params=params.metric_params,
            contamination=params.contamination,
            novelty=params.novelty,
            n_jobs=params.n_jobs,
        )
        self.vectorizer = TfidfVectorizer(max_features=100)

    def get_vector_df(self, log_features):
        tfidf_matrix = self.vectorizer.fit_transform(log_features).toarray()
        tfidf_df = pd.DataFrame(tfidf_matrix, columns=self.vectorizer.get_feature_names_out())
        return tfidf_df

    def preprocess_idia_logs(self, log_data: pd.DataFrame) -> pd.DataFrame:
        log_features = log_data[["eventTime", "severity"]].copy()
        log_features["eventTime"] = pd.to_datetime(log_features["eventTime"], errors='coerce')
        log_features = log_features.dropna(subset=["eventTime"])
        log_features["eventTime"] = log_features["eventTime"].astype(np.int64) // 10**6
        return log_features

    def detect_anomalies(self, log_data: pd.DataFrame) -> pd.DataFrame:
        preprocessed_data = self.preprocess_idia_logs(log_data)
        log_vectors = self.get_vector_df(preprocessed_data.astype(str))
        log_data["anom_score"] = self.model.fit_predict(log_vectors)
        return log_data

    def lime_explain_instance(self, instance: pd.DataFrame):
        preprocessed_instance = self.preprocess_idia_logs(instance)
        instance_vector = self.get_vector_df(preprocessed_instance.astype(str))
        instance_vector_2d = instance_vector.values.reshape(1, -1)
        training_data = self.vectorizer.transform(preprocessed_instance.astype(str)).toarray()
        
        def predict_func(X):
            return self.model.decision_function(X)
        
        explainer = lime.lime_tabular.LimeTabularExplainer(
            training_data=training_data,
            feature_names=self.vectorizer.get_feature_names_out(),
            verbose=True,
            mode="regression"
        )
        
        explanation = explainer.explain_instance(
            data_row=instance_vector_2d[0],
            predict_fn=predict_func
        )
        
        return explanation

    def visualize_anomalies(self, log_data: pd.DataFrame, feature: str):
        plt.figure(figsize=(10, 6))
        sns.boxplot(x=log_data[feature], y=log_data['anom_score'])
        plt.title(f'Comparison of Anomaly Scores with {feature\}')
        return plt.gcf()

    def human_readable_insights(self, explanation: list):
        insights = ["Feature: {\}, Contribution: {\}".format(feature, contribution) for feature, contribution in explanation]
        return insights


def shap_explain(model, log_data: pd.DataFrame):
    sample_data = log_data.sample(n=100)
    log_features = model.preprocess_idia_logs(sample_data)
    log_vectors = model.get_vector_df(log_features.astype(str))
    
    def predict_func(X):
        return model.model.decision_function(X)

    explainer = KernelExplainer(predict_func, log_vectors)
    shap_values = explainer.shap_values(log_vectors)

    return shap_values, log_vectors


def plot_shap_values(shap_values, log_vectors):
    shap.summary_plot(shap_values, log_vectors, feature_names=log_vectors.columns)
    return plt.gcf()$0

Answer

Detected Bugs in the Code

Below is a detailed inspection of the provided Python code, identifying bugs present in the code snippet along with suggested fixes.

1. Incorrect Use of Escape Characters

Section: visualize_anomalies Method

plt.title(f'Comparison of Anomaly Scores with {feature\}')

Bug:

  • The escape character \ before the closing brace } is not correct and will cause a syntax error.

Fix:

  • Remove the incorrect escape character to properly format the f-string.
plt.title(f'Comparison of Anomaly Scores with {feature}')

2. Incorrect Format String Usage

Section: human_readable_insights Method

insights = ["Feature: {\}, Contribution: {\}".format(feature, contribution) for feature, contribution in explanation]

Bug:

  • The curly braces {} are not formatted correctly; they appear escaped which would cause a syntax error.

Fix:

  • Properly format the string using f-strings for more readability.
insights = [f"Feature: {feature}, Contribution: {contribution}" for feature, contribution in explanation]

3. Typo in Import Statement

Section: Import Statements

from idia_logai.LOFParams import LOFParams

Bug:

  • The module name idia_logai likely contains a typo and should be corrected based on the package structure. Assuming the correct name is logai.

Fix:

  • Update the import statement accordingly if the package name is logai.
from logai.LOFParams import LOFParams

4. Incorrect Time Conversion

Section: preprocess_idia_logs Method

log_features["eventTime"] = log_features["eventTime"].astype(np.int64) // 10**6

Bug:

  • Converting Datetime to integer with np.int64 might raise a future warning or error. Use .view('int64') instead.

Fix:

  • Implement date conversion using .view('int64').
log_features["eventTime"] = log_features["eventTime"].view('int64') // 10**6 

5. Model Prediction Usage

Section: lime_explain_instance Method

def predict_func(X):
    return self.model.decision_function(X)

Bug:

  • LocalOutlierFactor does not have a decision_function, it has negative_outlier_factor_. Use appropriate function or attributes for prediction.

Fix:

  • Adjust the predict function accordingly.
def predict_func(X):
    return self.model.fit_predict(X)

6. Incorrect GCF Method

Section: visualize_anomalies and plot_shap_values Methods

return plt.gcf()$0

Bug:

  • The $0 appears to be a typo.

Fix:

  • Remove $0.
return plt.gcf()

7. Missing Self in Class Method

Section: shap_explain Method

def shap_explain(model, log_data: pd.DataFrame):

Bug:

  • This should be a method under the LOFDetector class. It is essential for object encapsulation.

Fix:

  • Add self to maintain consistency.
def shap_explain(self, log_data: pd.DataFrame):

Overall Assessment

Fix these bugs to ensure the code executes without errors. Here is the fixed version of the provided code snippet:

import json
import numpy as np
import pandas as pd
from sklearn.neighbors import LocalOutlierFactor
from sklearn.feature_extraction.text import TfidfVectorizer
import matplotlib.pyplot as plt
import seaborn as sns
import lime.lime_tabular
import shap
from shap import KernelExplainer
from logai.algorithms.algo_interfaces import AnomalyDetectionAlgo
from logai.config_interfaces import Config
from logai.algorithms.factory import factory
from logai.LOFParams import LOFParams 

@factory.register("detection", "lof", LOFParams)
class LOFDetector(AnomalyDetectionAlgo):
    def __init__(self, params: LOFParams):
        self.model = LocalOutlierFactor(
            n_neighbors=params.n_neighbors,
            algorithm=params.algorithm,
            leaf_size=params.leaf_size,
            metric=params.metric,
            p=params.p,
            metric_params=params.metric_params,
            contamination=params.contamination,
            novelty=params.novelty,
            n_jobs=params.n_jobs,
        )
        self.vectorizer = TfidfVectorizer(max_features=100)

    def get_vector_df(self, log_features):
        tfidf_matrix = self.vectorizer.fit_transform(log_features).toarray()
        tfidf_df = pd.DataFrame(tfidf_matrix, columns=self.vectorizer.get_feature_names_out())
        return tfidf_df

    def preprocess_idia_logs(self, log_data: pd.DataFrame) -> pd.DataFrame:
        log_features = log_data[["eventTime", "severity"]].copy()
        log_features["eventTime"] = pd.to_datetime(log_features["eventTime"], errors='coerce')
        log_features = log_features.dropna(subset=["eventTime"])
        log_features["eventTime"] = log_features["eventTime"].view('int64') // 10**6
        return log_features

    def detect_anomalies(self, log_data: pd.DataFrame) -> pd.DataFrame:
        preprocessed_data = self.preprocess_idia_logs(log_data)
        log_vectors = self.get_vector_df(preprocessed_data.astype(str))
        log_data["anom_score"] = self.model.fit_predict(log_vectors)
        return log_data

    def lime_explain_instance(self, instance: pd.DataFrame):
        preprocessed_instance = self.preprocess_idia_logs(instance)
        instance_vector = self.get_vector_df(preprocessed_instance.astype(str))
        instance_vector_2d = instance_vector.values.reshape(1, -1)
        training_data = self.vectorizer.transform(preprocessed_instance.astype(str)).toarray()
        
        def predict_func(X):
            return self.model.fit_predict(X)
        
        explainer = lime.lime_tabular.LimeTabularExplainer(
            training_data=training_data,
            feature_names=self.vectorizer.get_feature_names_out(),
            verbose=True,
            mode="regression"
        )
        
        explanation = explainer.explain_instance(
            data_row=instance_vector_2d[0],
            predict_fn=predict_func
        )
        
        return explanation

    def visualize_anomalies(self, log_data: pd.DataFrame, feature: str):
        plt.figure(figsize=(10, 6))
        sns.boxplot(x=log_data[feature], y=log_data['anom_score'])
        plt.title(f'Comparison of Anomaly Scores with {feature}')
        return plt.gcf()

    def human_readable_insights(self, explanation: list):
        insights = [f"Feature: {feature}, Contribution: {contribution}" for feature, contribution in explanation]
        return insights


    def shap_explain(self, log_data: pd.DataFrame):
        sample_data = log_data.sample(n=100)
        log_features = self.preprocess_idia_logs(sample_data)
        log_vectors = self.get_vector_df(log_features.astype(str))
        
        def predict_func(X):
            return self.model.fit_predict(X)

        explainer = KernelExplainer(predict_func, log_vectors)
        shap_values = explainer.shap_values(log_vectors)

        return shap_values, log_vectors


def plot_shap_values(shap_values, log_vectors):
    shap.summary_plot(shap_values, log_vectors, feature_names=log_vectors.columns)
    return plt.gcf()

For further in-depth learning about data science and anomaly detection algorithms, consider courses available on the Enterprise DNA platform.

Create your Thread using our flexible tools, share it with friends and colleagues.

Your current query will become the main foundation for the thread, which you can expand with other tools presented on our platform. We will help you choose tools so that your thread is structured and logically built.

Description

This document details the bugs identified in a Python code snippet for anomaly detection, providing specific fixes for issues like incorrect escape characters, format string usage, import statement typos, and method definitions.