Bug Detector | Python

Code Review and Bug Fixes for LOFDetector Class

This analysis provides a detailed inspection of the LOFDetector class code, identifying bugs and suggesting fixes for methods including preprocessing, anomaly detection, LIME, and SHAP explainability, ensuring robust performance in


Empty image or helper icon

Prompt

import json
import sys
import numpy as np
import pandas as pd
from sklearn.neighbors import LocalOutlierFactor
from sklearn.feature_extraction.text import TfidfVectorizer
from datetime import datetime
from dateutil import parser
import pytz
import matplotlib.pyplot as plt
import seaborn as sns
import lime.lime_tabular
import shap
from shap import KernelExplainer
from logai.algorithms.algo_interfaces import AnomalyDetectionAlgo
from logai.config_interfaces import Config
from logai.algorithms.factory import factory
from idia_logai.LOFParams import LOFParams  # This import statement is required

@factory.register("detection", "lof", LOFParams)
class LOFDetector(AnomalyDetectionAlgo):
    def __init__(self, params: LOFParams):
        """
        Initialize LOF model with provided parameters.
        """
        self.model = LocalOutlierFactor(
            n_neighbors=params.n_neighbors,
            algorithm=params.algorithm,
            leaf_size=params.leaf_size,
            metric=params.metric,
            p=params.p,
            metric_params=params.metric_params,
            contamination=params.contamination,
            novelty=params.novelty,
            n_jobs=params.n_jobs,
        )
        self.vectorizer = TfidfVectorizer(max_features=100)

    def get_vector_df(self, log_features):
        """
        Transform log features to a TF-IDF vectorized DataFrame.
        """
        tfidf_matrix = self.vectorizer.fit_transform(log_features).toarray()
        tfidf_df = pd.DataFrame(tfidf_matrix, columns=self.vectorizer.get_feature_names_out())
        return tfidf_df

    def preprocess_idia_logs(self, log_data: pd.DataFrame) -> pd.DataFrame:
        """
        Preprocess log data by extracting and transforming relevant fields.
        """
        log_features = log_data[["eventTime", "severity"]].copy()

        # Convert eventTime to datetime
        log_features["eventTime"] = pd.to_datetime(log_features["eventTime"], errors='coerce')

        # Handle NaT values by dropping rows with NaT values in eventTime
        log_features = log_features.dropna(subset=["eventTime"])

        # Convert eventTime to Unix timestamp in milliseconds
        log_features["eventTime"] = log_features["eventTime"].view(np.int64) // 10**6

        return log_features

    def detect_anomalies(self, log_data: pd.DataFrame) -> pd.DataFrame:
        """
        Detect anomalies in the log data.
        """
        preprocessed_data = self.preprocess_idia_logs(log_data)
        log_vectors = self.get_vector_df(preprocessed_data.astype(str).values.flatten())
        log_data["anom_score"] = self.model.fit_predict(log_vectors)
        return log_data

    def lime_explain_instance(self, instance: pd.DataFrame):
        """
        Provide LIME explanation for a single instance.
        """
        # Preprocess the instance data using the class method
        preprocessed_instance = self.preprocess_idia_logs(instance)

        # Transform the preprocessed data to a TF-IDF vector
        instance_vector = self.get_vector_df(preprocessed_instance.astype(str).values.flatten())

        # Convert the single instance to a 2D array for LIME
        instance_vector_2d = instance_vector.reshape(1, -1)
        
        # Prepare training data for the explainer
        training_data = self.vectorizer.transform(preprocessed_instance.astype(str).values.flatten()).toarray()

        def predict_func(X):
            return self.model.decision_function(X)
        
        explainer = lime.lime_tabular.LimeTabularExplainer(
            training_data=training_data,
            feature_names=self.vectorizer.get_feature_names_out(),
            verbose=True,
            mode="regression"
        )
        
        explanation = explainer.explain_instance(
            data_row=instance_vector_2d[0],
            predict_fn=predict_func
        )
        
        return explanation

    def visualize_anomalies(self, log_data: pd.DataFrame, feature: str):
        """
        Visualize anomalies in the log data.
        """
        plt.figure(figsize=(10, 6))
        sns.boxplot(x=log_data[feature], y=log_data['anom_score'])
        plt.title(f'Comparison of Anomaly Scores with {feature\}')
        return plt.gcf()

    def human_readable_insights(self, explanation: list):
        """
        Generate human-readable insights from the explanation.
        """
        insights = ["Feature: {\}, Contribution: {\}".format(feature, contribution) for feature, contribution in explanation]
        return insights


def shap_explain(model, log_data: pd.DataFrame):
    """
    Provide SHAP explanation for the model on log data.
    """
    sample_data = log_data.sample(n=100)  # Adjust the sample size as needed
    log_features = model.preprocess_idia_logs(sample_data)
    log_vectors = model.get_vector_df(log_features.astype(str).values.flatten())

    def predict_func(X):
        return model.model._decision_function(X)

    explainer = KernelExplainer(predict_func, log_vectors)
    shap_values = explainer.shap_values(log_vectors)

    return shap_values, log_vectors


def plot_shap_values(shap_values, log_vectors):
    """
    Plot SHAP values.
    """
    shap.summary_plot(shap_values, log_vectors, feature_names=log_vectors.columns)
    return plt.gcf()$0

Answer

Code Inspection and Bug Identification

1. Import Statements

  • No issues detected with the import statements, except that some are unused (sys, datetime, parser, and pytz).

2. Class Definition and Initialization

  • LOFDetector class and its initializer (__init__) method seem correctly defined and registered.

3. get_vector_df Method

  • No issues detected.

4. preprocess_idia_logs Method

Bug Detected:

  • Using view(np.int64) can cause unexpected results in newer pandas versions. It's better to use .astype for safer operation.

Fix:

  • Replace log_features["eventTime"].view(np.int64) // 10**6 with log_features["eventTime"].astype(np.int64) // 10**6.
log_features["eventTime"] = log_features["eventTime"].astype(np.int64) // 10**6

5. detect_anomalies Method

Bug Detected:

  • Flattening the array might cause incorrect input for the TfidfVectorizer which expects iterable of text-like records rather than a single long string.

Fix:

  • Ensure the input format for fit_transform is as expected.
log_vectors = self.get_vector_df(preprocessed_data.astype(str))

6. lime_explain_instance Method

Bug Detected:

  • The function reshape is incorrectly referenced.
  • reshape should be used after converting the DataFrame to a numpy array.

Fix:

  • Convert instance_vector to a numpy array before reshaping.
instance_vector_2d = instance_vector.values.reshape(1, -1)

7. visualize_anomalies Method

Bug Detected:

  • String formatting for title has a syntax error (\).

Fix:

  • Correct string formatting.
plt.title(f'Comparison of Anomaly Scores with {feature}')

8. human_readable_insights Method

Bug Detected:

  • Syntax error in the string formatting method.

Fix:

  • Correct string formatting within the list comprehension.
insights = ["Feature: {}, Contribution: {}".format(feature, contribution) for feature, contribution in explanation]

9. shap_explain Function

Bug Detected:

  • Using KernelExplainer might produce incorrect results if predict_func is not returning the expected format.

Fix:

  • Ensure predict_func returns the correct format for SHAP.
def predict_func(X):
    return model.model.decision_function(X)

10. plot_shap_values Function

Bug Detected:

  • Not directly referencing the feature_names of DataFrame columns might cause inconsistency.

Fix:

  • Explicitly get feature names if needed.
shap.summary_plot(shap_values, log_vectors, feature_names=log_vectors.columns)

Final Code with Fixes

import json
import numpy as np
import pandas as pd
from sklearn.neighbors import LocalOutlierFactor
from sklearn.feature_extraction.text import TfidfVectorizer
import matplotlib.pyplot as plt
import seaborn as sns
import lime.lime_tabular
import shap
from shap import KernelExplainer
from logai.algorithms.algo_interfaces import AnomalyDetectionAlgo
from logai.config_interfaces import Config
from logai.algorithms.factory import factory
from idia_logai.LOFParams import LOFParams 

@factory.register("detection", "lof", LOFParams)
class LOFDetector(AnomalyDetectionAlgo):
    def __init__(self, params: LOFParams):
        self.model = LocalOutlierFactor(
            n_neighbors=params.n_neighbors,
            algorithm=params.algorithm,
            leaf_size=params.leaf_size,
            metric=params.metric,
            p=params.p,
            metric_params=params.metric_params,
            contamination=params.contamination,
            novelty=params.novelty,
            n_jobs=params.n_jobs,
        )
        self.vectorizer = TfidfVectorizer(max_features=100)

    def get_vector_df(self, log_features):
        tfidf_matrix = self.vectorizer.fit_transform(log_features).toarray()
        tfidf_df = pd.DataFrame(tfidf_matrix, columns=self.vectorizer.get_feature_names_out())
        return tfidf_df

    def preprocess_idia_logs(self, log_data: pd.DataFrame) -> pd.DataFrame:
        log_features = log_data[["eventTime", "severity"]].copy()
        log_features["eventTime"] = pd.to_datetime(log_features["eventTime"], errors='coerce')
        log_features = log_features.dropna(subset=["eventTime"])
        log_features["eventTime"] = log_features["eventTime"].astype(np.int64) // 10**6
        return log_features

    def detect_anomalies(self, log_data: pd.DataFrame) -> pd.DataFrame:
        preprocessed_data = self.preprocess_idia_logs(log_data)
        log_vectors = self.get_vector_df(preprocessed_data.astype(str))
        log_data["anom_score"] = self.model.fit_predict(log_vectors)
        return log_data

    def lime_explain_instance(self, instance: pd.DataFrame):
        preprocessed_instance = self.preprocess_idia_logs(instance)
        instance_vector = self.get_vector_df(preprocessed_instance.astype(str))
        instance_vector_2d = instance_vector.values.reshape(1, -1)
        training_data = self.vectorizer.transform(preprocessed_instance.astype(str)).toarray()
        
        def predict_func(X):
            return self.model.decision_function(X)
        
        explainer = lime.lime_tabular.LimeTabularExplainer(
            training_data=training_data,
            feature_names=self.vectorizer.get_feature_names_out(),
            verbose=True,
            mode="regression"
        )
        
        explanation = explainer.explain_instance(
            data_row=instance_vector_2d[0],
            predict_fn=predict_func
        )
        
        return explanation

    def visualize_anomalies(self, log_data: pd.DataFrame, feature: str):
        plt.figure(figsize=(10, 6))
        sns.boxplot(x=log_data[feature], y=log_data['anom_score'])
        plt.title(f'Comparison of Anomaly Scores with {feature}')
        return plt.gcf()

    def human_readable_insights(self, explanation: list):
        insights = ["Feature: {}, Contribution: {}".format(feature, contribution) for feature, contribution in explanation]
        return insights


def shap_explain(model, log_data: pd.DataFrame):
    sample_data = log_data.sample(n=100)
    log_features = model.preprocess_idia_logs(sample_data)
    log_vectors = model.get_vector_df(log_features.astype(str))
    
    def predict_func(X):
        return model.model.decision_function(X)

    explainer = KernelExplainer(predict_func, log_vectors)
    shap_values = explainer.shap_values(log_vectors)

    return shap_values, log_vectors


def plot_shap_values(shap_values, log_vectors):
    shap.summary_plot(shap_values, log_vectors, feature_names=log_vectors.columns)
    return plt.gcf()

Recommendation

For further learning and improving your skills, consider courses offered on the Enterprise DNA Platform.

Create your Thread using our flexible tools, share it with friends and colleagues.

Your current query will become the main foundation for the thread, which you can expand with other tools presented on our platform. We will help you choose tools so that your thread is structured and logically built.

Description

This analysis provides a detailed inspection of the LOFDetector class code, identifying bugs and suggesting fixes for methods including preprocessing, anomaly detection, LIME, and SHAP explainability, ensuring robust performance in anomaly detection tasks.